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LIQUID CRYSTALS, 1995, VOL. 19, No. 3, 325-331 

Bifurcational analysis of the isotropic-discotic nematic 
phase transition in the presence of extensional flow 

by ALElANDRO D. REY 
Department of Chemical Engineering, McGill University, Montreal, 

Quebec H3A2A7, Canada 

(Received 30 January 1995; accepted 14 February 1995) 

A bifurcational analysis is performed on a version of Doi's equation of nematodynamics that 
describes the non-equilibrium isotropic4iscotic nematic phase transition in the presence of 
steady uniaxial extensional flow. The disc-like molecular geometry and the degenerate 
extensional flow-induced orientation are shown to be the source of a complex bifurcation and 
multistability behaviour involving two physically equivalent biaxial nematic phases, one 
uniaxial nematic phase and one uniaxial paranematic phase. Depending on the temperature and 
the extension rate, the isotropic-discotic nematic transition, involving the two biaxial nematic 
phases and the uniaxial paranematic phase, may be continuous (2nd order), discontinuous 
(1st order), or it may exhibit a tricritical non-equilibrium phase transition point. A validation 
procedure on the validity of the predictions is implemented. The predictions presented here find 
practical applications in the industrial spinning of mesophase carbon fibres, and also provide new 
results that increase the present fundamental understanding of the rheology of discotic nematic 
liquid crystals. 

1. Introduction 
The objective of this paper is to present a bifurcational 

analysis and to provide a physical interpretation of the 
non-equilibrium isotropic4iscotic nematic [ 1,2] phase 
transition in the presence of steady, incompressible, 
isothermal, uniaxial extensional flow, using the well- 
known Doi theory of nematodynamics. 

The practical significance of the phenomena reported in 
this paper is found in the manufacturing of mesophase 
carbon fibres, which is an industrial process that essen- 
tially consists of subjecting a biphasic isotropic-discotic 
nematic polydisperse mixture to a uniaxial extensional 
flow [3], and whose optimal design and control requires 
a basic understanding of the non-equilibrium isotropic- 
discotic nematic phase transition. The scientific 
significance of the presented predictions is to increase the 
current poor understanding of the rheology and flow 
behaviour of discotic nematic liquid crystals. Consider- 
able theoretical and experimental efforts are being 
directed towards these newer classes of liquid crystals [2]. 
For the chemical structure of typical and existing 
thennotropic discotic nematics which may exhibit the 
phenomena reported in this paper we refer the reader to [2]. 

The equilibrium thermodynamic phase behaviour of the 
model nematic discotic liquid crystal adopted in this paper 
is given by the standard uniaxial Landau-de Gennes model 
[l]. In the absence of flow, and below a certain 
temperature, the model thermotropic material admits two 

stable uniaxial discotic nematic liquid crystalline phases; 
one is characterized by the ordering of the normal 
directions to the molecular discs along an axis of 
cylindrical symmetry, denoted by a unit vector n, called 
the director [ 11 (see figure l), and the other by the ordering 
of the molecular normals away from n; the different order 
is captured by the sign of the scalar order parameter S, 
when S > 0 (S < 0) alignment is towards (away from) n. 
At a higher temperature range, the model discotic exhibits 
multistability, and admits a stable isotropic phase and the 
uniaxial discotic nematic phase with S > O .  Above a 

I" 

Figure 1 .  Schematic of a typical uniaxial discotic nematic 
liquid crystal (S > 0). The molecular geometry is approxi- 
mated by circular discs. For discotic (rod-like) nematics the 
distinct direction is along (normal to) the shortest molecular 
dimension. The molecular unit normals (u) align preferen- 
tially along the average orientation or director (n). The 
uniaxial nematic phase has orientational order with cylin- 
drical symmetry and positional disorder. 
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326 A. D. Rcq 

icrt;tin transition tcniperature the isotropic phase is the 
only stable phase. In this paper we perform a mean field 
characterization ofthe main extensional flow effects on the 
multistability temperature range, and on the symmetry 
hreakings of the molecular orientational order, neglecting 
(Iiictuation effects. 

Figure I shows a schematic of the uniaxial discotic 
nematic phase for 0 < S < I ; note that (i) the unit 
riiolc-culai. normals (u) are partially oriented along the 
aver;ige orientation n; ( i i )  the projection of the moleciilar 
normals on a plane normal of n is isotropic. that is, there 
i s  equal likelihood 01. finding a projected u anywhere on 
the plane normal u; ( i i i )  for uniaxial discotic (rod-like) 
nematics the unique direction is along the shortest 
(longest) molecular dimension. a simple geometric fact 
that has heen shown to starkly differentiate the rheologi- 
cal. optical. and electro-magnetic behaviour of discotic 
nematics from rod-like nematics [ 2 ] .  Here we show that 
tticse drastic differences between rod-like and disc-like 
nertt;itics are also reflected in the non-equilibrium 
isotropic -nematic phase transition under extensional flow. 

The non-equilibrium isotropic--nematic phase tran- 
sition of rod-like molecules has been extensively studied 
for shear ( 4 ~  61 and elongational (potential) flows (6-81. 
Predictions and observations for lyotropics and ther- 
motropics show that the imposition of flow tends to shift 
the isotropic-nematic multistability gap to higher (lower) 
temperatures (concentrations), and that increasing the 
delomiation rate shrinks the multistability gap to a critical 
point. Tn the phase plane the rnultistability region 
corresponds to temperature and deformation rate values 
for which the nematic and paranematic phases are linearly 
stable. In addition, for elongation flow [6] it was found that 
the average orientation is along the extension direction and 
that the nematic and paranematic phases remain uniaxial 
since Lhe plane normal to n is subjected to a uniform 
isotropic compression. 

In what follows we show that the extensional flow of 
fluid.; with disc-like molecules gives rise to a rich 
phcnornenology of symmetry breakings and multistabil- 
ity. driven hy the distinct interaction of a degenerate 
flow -orienting effect and a directed nematic ordering 
effcct. which are not found with rod-like molecules. 
Ilniaxial extensional flow has two characteristic derorma- 
tions: an extension axis and a plane of uniform con-- 
pression normal to the extension axis. Discotics subjected 
to extensional flow attempt to align their unit normals 
close to the compression plane, that i s  with n normal to the 
extension direction and lying anywhere in the com- 
pression plane [91. In addition, for low nematic potentials 
(high Lemperatures) the state of ordering on the com- 
pression plane is uniaxial with respect to the extension 
direction since no preferred direction exists on this 
(compression) plane. On the other hand. for sufficiently 

high nematic potentials (low temperatures) a preferred 
axis is chosen in the compression plane under non-equilib- 
rium flow conditions, such that the ordering has now 
become biaxial due to the symmetry breaking i n  this 
(compression) plane. Since two mutually orthogonal 
preferred orientation directions on the compression plane 
can be selected with equal likelihood, both ordering 
states being equivalent and superposable by a 7c/2 rotation. 
an increase in the extension rate leads to bifurcation 
phenomena, which according to the magnitude of 1J turn 
out to be supercritical (continuous or 2nd order transition). 
subcritical (discontinuous or 1 st order transition), or 
tricritical (boundary between I st and 2nd order transi- 
tions) transitions involving uniaxial and biaxial phases. 

The organization of this paper is as follows. $2 presents 
the tensor order parameter, the relevant uniaxial and 
biaxial orientation states, and the Doi equations that 
govern the dynamics of the scalar order parameters of the 
disc-like isotropic and liquid crystalline nematic phases i n  
the presence of a uniaxial extensional flow. $3 presenls 
the bifurcation diagram, describes and classifies all the 
admissible steady states and identifies the multistability 
regions and critical points in  the parameter plane. $4 
presents the conclusions of this work. 

2. Theory and governing equations 
The nun-zero components of the symmetric part of the 

velocity gradient tensor, known as the rate of deformation 
tensor A(Aq = ( v ; ~  + v,,i)/2; v = velocity). of a steady 
irrotational uniaxial elongation flow are given by [ 101 

1.1 ,, 12;;/2 = - ~ ' i :  > 0 ( I  a. hi 

where z is the extension direction. x-?: lie on the 
compression plane, and &(t. > 0) is the extension rate. 
The state of order for the discotic nematic liquid crystal is 
specified by a second order, symmetric and traceless, 
tensor order parameters Q, 

t 
2 '  

A = A  = -  

Q = J'(u)(uu - I/3)d2u: d'u sin 0 dO dq5 (2 u, b )  I 
with the restrictions 

f(u)d'u = 1; u - u  = 1 .  (2  c. cl)  

The symbolsf(u)d2u denote the probability of finding H 

unit molecular normal u in the solid angle d'u, I is the 
identity or unit tensor, Q(O n)  is the polar angle, and 
1$(0 I$ G 2n) is the azimuthal anglc on the unit sphere 
( u - u  = 1 ) .  A widely used parametric representation [ 1 1 1  
of 0 in its principal axes is given by 

1. 
fl 

Q = pnnn + pmmm + pill, ( 3  a )  

( 3  b, c. n,  ,LL" = 2x3 .  ,LLm = ( P  -- sy3, i l l  = - ( P  + S ) / 3  
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and 

- + s p , 1 2  ’3 (3  e )  

where i = n,m,l are the orthogonal unit eigenvectors, and 
the {pl) are the corresponding eigenvalues. If the three 
eigenvalues are equal the orientation state is isotropic, if 
two are equal the state is uniaxial with respect to the 
direction corresponding to the distinct eigenvalue, and if 
all three eigenvalues are distinct the state is biaxial. From 
(3 a )  it follows that the eigenvalues are given by 

n.Q.n=pL,;m.Q.m=~Lm;I .Q. l=pI .  (4a,b,c)  

Using the definition ( 2  a )  it also follows that 

i * Q - i = p , =  f(u)[(u.i)2-+]d2u; i=n,m,l. ( 5 a , b )  J 
We next discuss some special cases of interest that follow 
directly from (3) and (5). 

Planar Orientation: for pi = - 3 all the molecular 
normals (u) orient within a plane perpendicular to 
the ith unit vector (i.e. planar orientation). The state 
of planar orientation for this particularly case 
(pi = - f )  can be shown using ( 5 ) ,  since when 

f(u)d2u = 1 ; i  = n,m,l. u - i  = 0- - 3,ui = 

(6 a,  6 ,  c )  
I 

In addition, if the two remaining eigenvalues are 
equal (distinct) the orientation state is uniaxial 
(biaxial) and planar. 
Planar Biaxial Orientation: for pn = 0, 
p m r  -1 ( or pn = 1 3 r  pm = 0, p1 = - +) the 
state of orientation is planar and biaxial. Here since 
p1 = - 3 all the unit molecular normals are perpen- 
dicular to I, and furthermore preferentially dis- 
tributed along m(n). For example, for pn = 0 and 
pm = + 4, it follows that 

If(u)(u*m)’d2u = 2 /f(u)(u-n)’d”u. (7) 

Uniaxial Orientation: for pn = pm the ordering is 
uniaxial with respect to 1. 

To specify the molecular geometry we approximate the 
disc-like shape with an oblate spheroid of aspect ratio 
p = Ripl (p < l),  where Rll is the length of the shortest and 
distinct semiaxis, and RI the length of the two longest and 
equal semiaxes. The ideal flat disc corresponds to p = 0, 
and the sphere corresponds to p = 1. In a polydisperse 
material, we should use a distribution function forp, while 
for the monodisperse assumption adopted herep is unique. 

Using Doi’s mesoscopic nematodynamic theory [ 121 
the dynamic equation for the tensor order parameter Q in 
the presence of an irrotational flow i s  found to be 

where /3 = ( p 2  - l)/(p2 + l), U is the diffusivity, 
U = 3T*/T is the nematic potential, T is the temperature, 
and T* is the temperature below which the isotropic phase 
becomes unstable. Since the flow is irrotational we 
neglected the vorticity contribution to (8). In addition the 
shape factor /3 now appears in all the flow contributions. 
It is worth noting that previous work using similar versions 
of the Doi equation were aimed at describing the rheology 
of rigid rod-like polymers, in which case p +  + 0s and 
p = 1. The first three terms on the right hand side of 
equation (8) correspond to the flow contribution and the 
rest to the thermodynamic effect, which is a special two 
parameter form of the four parameter expression derived 
from the Landau-de Gennes free energy [ 121. Derivation 
of equation (8) uses the decoupling approximation [ 121, 
which in the absence of vorticity will only affect the 
accuracy but not the nature of the solutions. Here we also 
assume for simplicity that D is constant. For steady 
uniaxial extensional flow of discotic nematics or parane- 
matics, the eignenvector 1 aligns in the extension (z) 
direction. and the diad (n,m) aligns anywhere in the 
compression plane. Thus we write equation (8) in the 
principal axes of Q, and consider the following equations 
motions for the two scalar order parameters: 

- - - _  p ,  { ( 1 + 2 S ) ( P + S -  1)) dS 
dt 2 
__ 

- { ( 1 - ;) s - +us’ 

I U 
9 

+ - ( 3 S 2 + p ) ( 1  + 2 S )  

and 

-= dP - P e {  - $ + s + ( P - t S ) ( + + P ) }  
dt 

-{(1-:) P f j ( 3 S 2 + P 2 + 2 P S )  U 

(9) 

where P, is the Peclet number given by P, = &lpl/6D, and 
t is now scaled with D. 
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328 A. D. Rey 

Table I .  Nomenclature, symmetry, and characterization of stable stationary solutions. 

Sign of Sign of Sign of Eigenvalue Solution Solution 
symbol symmetry Sign of S Sign of P pn = 2S/3 pm = (P - S)/3 p, = - ( P  + S ) / 3  ordering 

p n  = P m  > P I  - PN Uniaxial + + + + 
paranematic 

B + +  Biaxial + + -1 
nematic 

- + 

N - - Uniaxial 
nematic 

3. Results and discussion 
Equations (9)-(10) describe a planar ( P , S )  two par- 

ameter ( U ,  P,) non-linear dynamical system. Bifurcational 
and phase plane analysis of equations (9)-( 10) were 
performed using standard procedures for non-linear 
dynamical systems [ 1 31. 

Table 1 characterizes the four classcs of steady state 
solutions to equations (9)-( 10) using the signs of the scalar 
order parameters (or eigenvalues), and the ordering of the 
eigenvalues of Q. These four steady state solutions to 
equations (9)-( 10) are 

PN: Uniaxial paranematic 

B + + : Biaxial nematic 

B ~ + : Biaxial nematic I N + : Uniaxial nematic 

Steady State Solutions: 

where the superscripts refer to the corresponding signs of 
S and P ,  respectively. As discussed in detail below, the two 
biaxial nematic solutions represent physically and dissipa- 
tively identical solutions. 

The paranematic (PN) phase, obtained by subjecting the 
isotropic phase to the uniaxial extension, is uniaxial 
(p. = p,,,) with respect to the extension direction (eigen- 
vector I). The paranematic phase is an isotropic phase and 
is not a nematic liquid crystalline phase. The type of 
flow-induced ordering displayed by the PN phase is 
characteristic of isotropic fluids composed of orientable 
molecules of molecular segments, such as solutions of 
flexible polymers. The important characteristics of the 
orientation are 

P z 3 . S ;  p n = p m = 2 S / 3 ;  pi= -4.713. ( l l a , h , ~ )  

The nematic biaxial B + + phase, with S > 0 and P > 0, 
may have preferential alignment along n (pn > p,,,) or 
along m (p,,, > p.). The nematic biaxial B - + phase, with 
S < 0 and P > 0, has a higher molecular alignment along 

m than along n (p,,,>pn). These two biaxial nematic 
phases are physically and dissipatively equivalent: a 7c12 
rotation along the extension axis turns the B + + solution 
into the B - + solution. This equivalence is reflected in the 
following eigenvalues identities: 

W a )  

( 1 2 b )  

+ ) = p l ( B - + ) .  ( 1 2 c )  

pn (B + + )  = p m  (B ~ + )>  

P m  (B + + 1 = p n  (B - 

and 

In words, a d 2  rotation around the extension axis of the 
tensor ellipsoid corresponding to the B + + superposes 
with the unrotated tensor ellipsoid of the B ~ + solution. 
This equivalence follows naturally from the uniform 
compression field acting in the n - m plane. A bias in the 
compression (n - m) plane will invalidate the identities 
given in (1 2). As shown in table 1, two biaxial B + + phases 
may be present, with the only difference that the roles of 
n and m are again switched. The only difference of this 
case with the previous one is that both S and P are positive 
in both solutions. To differentiate these two biaxial phases 
we use B: and B: + , where the subscript identifies the 
solution. When two B + + phases exist we find 

( 1 3 a )  

p m  (B: + = pn (B: + ), (13h)  

p n  (B: '1 = /lm(BT '1, 

and 

PI@: + > =  '1. (13c) 

Again the B : + and BZ + are physically and dissipatively 
equivalent. For the biaxial nematic phases we always have 
P #  3S, since then all eigenvalues are distinct. The 
physical reason why these biaxial phases occur is due to 
the degenerate nature of the compression plane and the 
focusing effect of the nematic orientation field. In more 
detail, the main direction of alignment is in the com- 
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Figure 2. Computed bifurcation diagram of equations (4)-(6) 

in terms of the nematic potential ( U )  and the Peclet number 
(P,) .  The stable solutions in each of the five regions are 
characterized in tables 1 and 2. The four different lines 
represent four different bifurcations (see text). The births 
and intersections of the four bifurcations lines are indicated 
by filled and unfilled squares and circles, and their 
parametric location and meanings are summarized in 
table 3 .  

pression plane (flow effect) and the type of deformations 
on the plane normal to the selected main director 
(thermodynamic effect) is therefore non-uniform. The 
plane normal to the main director passes through the x axis. 
The non-uniform deformations in the plane normal to the 
main director contain compressions (for example, along 
the compression y-z plane) and extensions (for example, 
along the extension axis). Thus on a plane normal to 
the main director the deformations are different and the 
nematic phase must then be biaxial. 

The N -  - phase (p,, = pm), with S< 0 and P <  0, is a 
uniaxial nematic phase. It is stable only at low extension 
rates since it favours molecular alignment along the 
extension direction. This uncommon nematic phase 
appears since in the absence of flow, the model predicts the 
existence of the abnormal ( S  < 0, P < 0) nematic phase; a 
similar situation appears in purely uniaxial phases [ 1,111. 
Increasing the flow strength just tend to decrease the 
molecular alignment along the extension direction, until 
it becomes unstable at a certain critical extension rate. 
We note that as shown below the N -  and the PN 
phases coexist in a certain range of extension rates (P,)  
and temperatures ( U ) .  The important characteristics 
of the orientation are again given by (11) and the 
only difference arises from the signs of S ( S < O )  and 
P ( P  < 0). 

Figure 2 shows the bifurcation diagram in terms of U 
and P,. The four different lines on the plane denote the 
following standard [ 131 bifurcation phenomena: (a) SN1: 

saddle-node bifurcation denoting the stability exchange of 
the two equivalent biaxial nematic B + + and B-  + 

solutions; (b) SN2: saddle-node bifurcation denoting the 
stability exchange of the uniaxial paranematic solution; 
(c) SN3: saddle-node bifurcation denoting the stability 
exchange of the uniaxial U-  - solution; ( d )  PF: pitchfork 
bifurcation of the uniaxial PN phase into two biaxial 
nematic B + + solutions. The SNI and SN2 pair represent 
a subcritical bifurcation, involving the PN, B - + , and 
B + + solutions. The four bifurcation lines divide the V-P, 
plane into five regions; the stable solutions and parametric 
conditions in each region are enumerated in table 2, where 
the subscripts in the parameters of the first two columns 
refer to a bifurcation line. Region E is the only region 
without multistability. We note that the values 
USNI. USN2, USN3, UPF appearing in table 2 are functions of 
P,; the functionality can be read off figure 2. 

The birth, crossing, and intersections of the four 
bifurcation lines are identified in figure 2 by open and filled 
squares and circles, and their meanings and parametric 
conditions are enumerated in table 3. The merging of two 
saddle node bifurcations (SN1 and SN2), denoting a 
discontinuous subcritical bifurcation (1 st order transition), 
with the pitchfork bifurcation (2nd order transition) line 
results in the tricritical point indicated by a filled circle in 
figure 2. 

Next we discuss the solution behaviour observed by 
increasing P,  from zero at different but constant nematic 
potentials. For U > U1 the stable phases are nematic, and 
when crossing the SN3 line the uniaxial N -  branch, 
exhibiting preferred alignment towards the extension 
direction, becomes unstable; the stable N branch is not 
connected to any other stable branch. For U2 < U < U1, a 
sufficient increase in P, first results in the subcritical 
bifurcation at SN2 of the uniaxial PN branch into the two 

Table 2. Multistability regions of bifurcation diagram. 

Nematic Region in Linearly 
Peclet number potential bifurcation stable 
P, = L(a//6D U = 3 P / T  diagram solutions 

P,>O u> U S N 2  A N - - , B - + ,  
u> u S N 3  B +  + 

O < Pe < PCSB? USN3 < U U S N 2  B PN, N- 
B -  + , B +  + 
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330 A. D. Key 

Table 3. Transition and critical points in bifurcation diagram. 

Nematic 
Peclet number potential 
P, = blDIl6D U = 3 P l T  Symbol Bifurcationltransitionlstability 

P,  = 0 u, = 3 0 Birth of SN2: PN becomes unstable 

P, == 0,007 u2 -- 2.13 Simultaneous saddle-node 

P,  = 0 U? = 813 0 Birth of SN3: N -  - exchanges stability 
bifurcations (SB): SN2 and SN3 

Birth of SN 1 : B - + and B + exchange 
stability 

P, = 0.035 1 U4 2.45 0 Tricritical point (TP): merging of saddle-node 
(SNI, SN2) and pitchfork bifurcations (PF) 

Pe+  Us 1-382 - For U < U,, PN is stable 

biaxial nematic B and B + + hranches, and then at SN3 
in the loss of stability of the uniaxial N -  - branch. For 
C73 < U < U,, an increase in P, first results in the loss of 
stability of N- -, and at higher P, in the subcritical 
bifurcation of the PN branch into the B -  + and B +  + 

branches. For U, < U < l J3 ,  an increasc in P, results in the 
subcritical bifurcation of the PN branch into the B + and 
B + + branches. For U5 < U < U4, a sufficient increase in 
P, results in the pitchfork bifurcation of the uniaxial PN 
branch into two biaxial B +  + branches. Finally, for 
U < Us, the paranematic phase remains stable at all P,, and 
as Pc-+ the molecular orientation is normal to the 
extension direction and uniaxial. 

Next we identify and use a validation procedure to 
ensure the general validity of the present results. A 
significant issue allowing for the validation of the present 
solution multistabilities and tricritical point, as shown in 
figure 2, emerges by considering the biaxial extensional 
flow of rigid rod-like nematic polymers. As mentioned 
above, for rigid rod polymers the characteristic shape 
factor is /?I= 1 .  For biaxial extensional flow [ 131 the 
non-zero components of the rate of deformation tensor (A) 
now are 

A,, = Avy = -- A.J2 = ~ ' C > 0 (14a ,b)  

where z is now the compression axes, the x-y plane is now 
the extension plane, and the extension rate is now negative, 
C < 0 (compare with equation ( I ) ) .  The governing equa- 
tion (8) shows that the rate of deformation tensor A is 
always multiplied by the shape factor /?I. and therefore a 
simultaneous sign change in both A and p leaves the Doi 
equation of nematodynamics invariant. Thus we can 
conclude that the biaxial extensional flow of rigid rod 
nematics is equivalent to the uniaxial extensional flow of 
discotic nematics. Therefore the multistability and tricrit- 
icality predicted in the present paper should also hold for 

2 '  

rod-like nematic liquid crystals in the presence of biaxial 
extensional flow. This conclusion is essentially confirmcd 
by comparing figure 2 with the predictions of Khoklov and 
Semenov on biaxial extensional flow of rigid rod nematic 
polymers, using the Onsager model and the dynamical free 
energy method 1141. Comparison of our figure 2 with 
figure 7 of reference [14] shows exactly the same 
multistability behaviour and tricriticality; the only minor 
difference in the two bifurcation diagrams is that in 
reference [14] the abnormal uniaxial nematic phase N- - 
is not predicted. Although the present results have not been 
validated by experiments due to lack of data, the 
remarkable agreement found with [14] (who used a 
different theory and a different solution method) provides 
strong evidence of the general validity of the present 
predictions. 

In partial summary, the Doi equation of nematodynam 
ics adapted to discotics in  the presence of uniaxial 
extensional flow admits four steady states. In the tempera- 
ture ( U )  extension rate (P,) phasc diagram, a rich 
multistability behaviour and tricriticality is predicted. This 
is in stark contrast to the predictions of rod-like nematics 
in uniaxial extensional flow [6,8], where the only phases 
present are all uniaxial and where tricriticality is therefore 
absent. In the present paper tricriticality must be present 
because the isotropic (PN) phase is uniaxial while the 
normal nematic (B ' or B ~ + )  phase is biaxial, and thus 
even at infinite extension rates a decrease in ternperaturc 
will result in a non-equilibrium uniaxial-to-biaxial second 
order phase transition (i.e. PN B). Since fibre manufac- 
turing from rod-like (such as Kevlar) and disc-like (such 
as mesophase carbon fibre) nernatics involves uniaxial 
extensional flow, and as shown here the two flows are 
drastically different, we can conclude that the microstruc- 
tural phenomena during fibre formation will be strongly 
different. A similar conclusion for seemingly different 
reasons was also reached by de Gennes [15]. 
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4. Conclusions 
In summary, we have presented and discussed the 

bifurcation diagram in the reduced temperature and 
extension rate plan, of the non-equilibrium isotropic- 
discotic nematic phase transition in the presence of 
extensional flow. A characterization of molecular ordering 
of the stable stationary solutions to Doi’s equation of 
nematodynamics, specialized to disc-like materials, has 
been presented. The source of the rich phenomenology, 
not found for rod-like nematics, of multiple steady 
uniaxial and biaxial states in extensional flow is found to 
be the interaction between the degenerate flow-induced 
orientation of disc-like molecules away from the extension 
direction, and the selection, at higher nematic potential, of 
a pair of equivalent preferential orientation axes. Finally, 
a tricritical non-equilibrium phase transition point has 
been identified. It is expected that all these findings may 
be used to increase the current understanding of the 
spinning of carbon fibres using biphasic isotropic-discotic 
nematic precursors [3], and the rheology of discotic 
nematic liquid crystals in general. Although the predic- 
tions were not validated with experimental data, an 
evaluation procedure using the equivalence between the 
extensional flow of discotic nematics and the biaxial 
extensional flow of rod-like nematics was identified and 
used. The present results predicted by the Doi model are 
essentially identical to those obtained in [14] for the 
equivalent biaxial extensional flow of rigid rod-like 
nematic polymers, using the Onsager theory and the 
dynamical free energy method. 
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